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_ THE EFFECT OF STRAY PARAMETERS ON THE STABILITY OF A CLASS OF NON-
+  LINEAR NETWORKS

S. T. SATHE and T, E, STERN ' | |
Columbia University, New York, N.Y. ‘

Abstract: When analysing a nonlinear re51st1ve network one normally ,
considers its simplified resistive model which neglects the stray in--
ductances and capacitances present in the network. The dynamics in-
E troduced by these stray elements may, in certain cases, critically af«
;1 fect the network response, For a certain class of resistive networks |
. we show here that a certain lower bound on’the ratio of the smallest §
_stray capacitance to the largest stray loop inductance is sufficient:
for the global stablllty of the network.

I. INTRODUCTION

. An important class of networks in current’ technology consists of
those which are nonlinear and essentially resistive in nature. By
" ’this we mean that any reactive parameters occur unintentionally as
" stray or parasitic elements. Typical of these types of networks are
those used in digital logic circuitry. For analysis purposes networks
-~ which are essentially resistive are normally approximated by resistive
" .. mathematical models, that is, models containing no dynamics. The ana-
: lysis of such a model reduces to the determination of one or more
2!  equilibrium states. The physical network, however, contains certain
dynamic effects due to the unavoidable presence of various stray reac-
tive parameters, and these dynamic effects can lead to certain undes-.
... .irable unstable behavior such as sustained parasitic oscillations. It
.7 7is therefore of considerable practical importance to inquire into the|
conditions under which the response of an essentially resistive net- |
work from any initial state will, in spite of the stray reactances, .
- remain bounded and tend toward an equilibrium state as t - ®, Under. |
;' .. these circumstances the network will be said to possess a constant j
= . 1imiting regime (CLR). (A CLR implies the non-existence of any sus- -
... ‘tained oscillations) , ‘ -

A

“'i ‘”i The purpose of this paper is to delineate a class of essentlally
N resistive networks in which sufficient conditions for a CLR can be de-
- rived and simply interpreted.

\

B II. NETWORK DESCRIPTION

5'X:. We shall limit the discussion to networks composed of elements
~ whose resistive mathematical model satisfies the following conditions:

A”{"‘ . 1) Each element has term1nal relatlons which can be expressed in.
- the form i = f(v) where i, f and v are all n-vectors (column matrices)
and f is contlnuously differentiable. Thus f represents a resistive

n"pOI‘t . ’ :

‘ ' - 2) The funCtion f is reéiproca]_ [5] for each . element.
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P 3) For each element there exist positive constants N and € such
" that* ||v|| 2 N implies v f(v) 2 €

For any network element that is quasilinear (QL) [5], its termi-
" nal relations can also be written in the inverse form v = £f7-(i). All
elements that are not QL will be called voltage-controlled nonlinear
resistors (VCNR). Note that any form of (reciprocal) nonlinear coup-.
. ling is permitted among the various ports of an element. As will be
vet . apparent from our development, the dual case of networks containing QL
: resistors and current- controlled nonlinear resistors (CCNR) can be
handled in an identical manner. i
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;}’.' ITI. PROPER AUGMENTATION, NETWORK EQUATIONS
Since the actual distribution of stray reactive elements is not

‘ ~easy to determine, especially when the physical layout of the elements

.. is unknown, we would like to obtain our results with as little infor-'

;.. mation as possible concerning these parameters. The resistive network

i model will therefore be augmented by certain linear capacitances and
inductances in a largely arbitrary fashion, subject to the following

o con51derat10ns.v

It is known that for certain "irregular" nonlinear networks [1]
the response of the mathematical model may be indeterminate. To avoid
‘~ this possibility, we shall assume that each VCNR element has a posi- !
_tive capacitance of arbitrary value in parallel with each port. For i
__.the QL elements we shall assume that each port is either augmented by :
., a series positive inductance or by a parallel positive capacitance
" (all of arbitrary values). (For simplicity, it will be assumed that !
5 ‘ " all ports of the same element are augmented by the same type of reac-|
4 Z;i' . tance). Any augmentation consistent with the above restrictions will:
q o : x’“be said to be a "proper augmentation". In the sequel it will always
' be assumed that we are dealing with a properly augmented network.
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To obtain the state variable equatlons for such a network we

P

S

1 .+ choose a "proper tree" following the procedure of Bryant [3] and |
g ) - wWrite the fundamental loop gnd cutset matrlces, following the notatioﬂ

o T of T e
1. '.A’“‘v‘_.. \- . :\.“‘_‘.‘;-* r—'" . —
| A R P A
LT B=[1rl=| 0 | Igg © Fgs Fqe O
, . o : L : L~ _
{ ‘and Q = [~ FC 1] |
1 . ’
. o where F O because in the augmented network each resistive element:
k ' “.. has a chac1tance in shunt lor an inductance in series with each of itd
; ports. ,
S I?fbﬂ* ll*]l denotes "norm" and ()* denotes "transpose",
P o _t ’ - . ) : ' :
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. The network differential equations will be [2]
*”‘: B « 1’ [~ ] F_' ] = 7
~§ A L 0 i, 'PYreq' - I-'Ys eg
| ] ‘
= _ B ,
! e 1] t ; t
L I q- _0 c 1 es- _+ngig + Fyg 17_
" where L'= L, + F v L, FC |
YT Tyt LTyt
[}
. and C =C_ + Pgs C. F__ are constant symmetric positive defihite |
matrices, i_ = g(e_) is the current vector for the resistive elements
.included in9the chdrds and e_ is the voltage vector for the resistive

ﬁ,?elements in the tree brancheg.' Since only QL pesistive elements may ;-

. _ 'appear as tree branches, we can write e, = f7:(i,) =h(i)).

i

i
»

The form of these equations is greately Simplified if we define |

~ 'a scalar "dissipation function"

s .
/
t

Sy [t ' | tf ot t .. -
43(es’1Y) - -fg (_nges) Pgsées - Ih (Fyriy)Pyrdly "1y Fye®s (2)]

: . where ¥ is assumed to be an indefinite line integral;z(independent of%
% ....path because of reciprocity [51). ‘ SR - E
j?%'w‘  The network equations how_become j
11 .t
LT L. O iyl - (3F/9i,) g
L SR B B | : (3)!
o cf |a -(33/3e )"| |
I L~ ) Lsl ' s
L 'IV. EXTISTENCE OF A CONSTANT LIMITING REGIME |
B Based on Eq. (3 ) we can now derive a sufficient condition for i
¢ .- the existence of a CLR. The following definitions will be required. %
{"‘ ;7,“ i . . : ‘v . . N dh t . ;
a3 : A T .
‘:"v‘ = ‘EE - R( lY)\flejcB'T; FYI‘ ;
i ' .
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' -+ value,

.?Eiié and ‘ 2 + 3 [ (éaa --]t_ [ ] f,"f(75

. ... cuited), and may be negative.

it § et s 2 e s < She s b p By e i e

If A is a real symmetric matrix, let

m(A) = least eigenvalue of A

{ “é , M(R) = greatest eigenvalue of A = D . .
i Let my = Inf m(R) over all i, . - (43)
ﬁ : - . mg = Inf m(G? over all &g . 3/ (4b)
ML=%M@) ' BTN

( ' i
Now, con31der a properly. augmented network N, described by equa-?

- tions (3) and satisfying the assumptions of Sect. II In terms of the
: above quantitles the following theorem may be stated' : ;

Theorem: The network N will possess a constant limiting regime 1f

L | |
gLC->"-‘E§ | '(52.

Before proceeding to the proof of the theorem, it is worthwhile

... to give a simple interpretation of condition (5) in terms of the

structure of the network. It is easily shown that m¢ is equal to or .

... greater than the smallest capacitor in N, and is equal to or less .

-»> than the largest loop inductance in N, (1 e., the sum of all induc- '

.7 tanced~in the loop L[71): Furthermore, m% is derived from the incremen-
" tal resistance matrix seen from the indu ‘

tors when all capacitors are
short~circuited. Because of the manner of augmentation, mp must be

- . positive.* On the other hand, mgals related to the 1ncremental,cqn-
a

ductance matrix seen from the capacitors (with inductors open-cir-

Clearly if were positive, condition (5) would automatically be

"7 fulfilled for a any proper augmentation. In the more interesting case

where is negative the theorem indicates that the ratio of smallest

~ capacitdnce to largest loop inductance must be above a certain minimum

-2

, in ordertto.assure,a CLR.. (This.is,-of,qourse, a suffi-

fc1ent condltlon only)

Proof. We prove the theorem us1ng two Lyapunov functlons,

. 1.t 1.t S ' B
. T W=3Feg C eS + 5 1Y L 1Y | o .(5)

I
:

We | L

¥ See proof of’theorem, o Ry
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i . .write

n pras

" eq=-0.- Thus condition (1) is fulfilled.

- The latter was first suggested by Brayton and Moser [6]. 1In (7), a
is a positive constant to be determined subsequently. Using the di-
... rect method of Lyapunov [4], we can show the existence of a CLR if .

i

1 m——
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1) 6 < 0 everywhere exéépt at the singulag points of (3)».

Q-:f 2) All trajectories aregbounded.for t > Ol (8, p. 661
z ‘ i : :
T . o . \
j To prove:condition (1), we take :
o t
o b ';‘. “ ‘ "L 0 '} -1-R P - Fi -
‘ . Y , Ys \
v - < g. + > LA ;
. e 0 ¢ . ¢ e
: . S : L J L "Ys o 7 Ls] - 1 '
; t
_ B \ : J . 3
S ot @ vt (. _a . '
Pl =1y ( R+3 L>.1y‘+ €s ( G-3 C) s : | (82,

Since each VCNR isAshunted'by a capacitance, it must be a chord iv'

.. of a proper tree. Thus, all resistive tree branches are necessarily
“% .. Qu. Hence the function h(ip) must be QL in i,. 'Since each inductive

.. chord must be in series with a resistive element, the rank of the

. matrix Fyp will be gqual to the number of rows of Fyn. As a result
-~ the function Fyph(Fypiy) will be QL in iy and the matrix R will be
7 symmetric positive éeflnite.f [5, p. 36] No such conclusions can be
drawn concerning the matrix G, ‘

. ‘Now using definitions (ﬂa-d) and substituting into (8) we mayb

am - e

Tl vy (aML - mR) vy 8 ('mG T2 /% |

Assuming that'conditiqﬁ (5) is fulfilled we can finq’én a’o .'L

-2 |
mR >a > _:EE : o 3

C ) . ) t

. Such a value of a will mske V $ 0 and V = O only when i, =0 and

Y
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To prove condition (2) we find from métrix B andveq. (1) that

W= - egg(eg) - ih(1,)

§
! {
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‘a quasilinear function. Hefice W » © and W < O when el + 1L 1= =
_ Due to the method of augmentation ||i ]| + lle_|| = = alwayd impliés
el + i)l = ®. Thus using W as the Lyapuﬁov function we can con- !
 clfde that all solutions of eq. (1) will remain bounded. ?

Tt was assumed that etg(e )-2 € > 0 for 1Arge lle H'énd‘h(i )Aiéj
i
.

) |
‘This completes the proof of the theorem.l- -

V. CONCLUSIONS . -

We have shown that by assuming physically reasonable distribu-

- tions of stray reactive elements in a basically resistive network,
. certain sufficient conditions for a stable behavior can be -derived.

' For a network composed of VCNR and QL resistive elements the conclu- .

" sion to be drawn from these conditions is that stability will be as- |

#17. with a VCNR that determines the limit of stability, rather than the

: one should increase all VCNR capacitances. N

77 will be stable if its stray capacitances are sufficiently small com-
"'} pared to its stray,inductances. - o '

sured if the stray inductances are sufficiently small compared to the
stray capacitances. As a practical application of this result, con-
sider the following situation. Suppose a network of the type dis-
cussed herein is constructed and is found to oscillate due to parasi-
tic effects. Our results suggest that such oscillations can be sup-:
pressed by either reducing any stray inductances, or adding capaci- ’
tances. (The latter may be easier to implement).

¢
P
i
¢
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For the sake of clarity and brevity, many simplifications were

""" made in the above development. Considerably sharper and more general

results can be obtained by omitting these simplifications. For ex-
ample, one can show that it is the smallest capacitance in parallel

smallest capacitance in the network. Thus, to stabilize a network

Finally, we recall that all of the results can be dualized.
Thus, for example, a network composed of CCNR's and QL resistances

-1
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